Программирование Математика для анализа данных [Нетология]

Stokrat

Модератор
Модератор
Stokrat

Stokrat

Модератор
Модератор
Сообщения
11,929
Реакции
1,532
2810_435408561569780089231.png

Чтобы увидеть в больших объёмах данных закономерности, аналитик опирается на линейную алгебру, математический анализ и теорию вероятности. Если специалист не разбирается в этих направлениях — гипотезы и выводы будут неточными. Это как запустить ракету в космос, не зная траекторию полёта.

Мы создали вводный курс в математику, чтобы вы начали исследовать данные с важным бэкграундом для Data Science и выбирали алгоритмы, которые будут решать поставленную задачу.

Кому подойдёт курс
  • Специалистам по Data Science
    Начнёте глубже разбираться в алгоритмах машинного обучения. Поймёте, какие принципы лежат в основе разных алгоритмов, чтобы выбирать правильные инструменты.
  • Аналитикам данных
    Познакомитесь с основными математическими концепциями и заложите теоретический фундамент, чтобы лучше разбираться в статистике и правильно интерпретировать данные.

Программа курса

1.
Линейная алгебра

Это базовый раздел математики. Он даёт понимание, как компьютер представляет данные и управляет ими.

Лекция 1. Векторы.
Лекция 2. Матрицы.
Лекция 3. Продвинутая линейная алгебра.

2. Математический анализ

Узнаете, какая теория стоит за понятием «машинное обучение». Поймёте, с помощью каких алгоритмов математического анализа компьютер ищет параметры моделей.

Лекция 4. Производная.
Лекция 5. Производная функции нескольких аргументов.
Лекция 6. Теория оптимизации.

3. Теория вероятности

Этот раздел математики поможет провести анализ гипотезы с помощью цифр и понять, какие выбрать шаги, чтобы решить задачу.

Лекция 7. Дискретные случайные величины.
Лекция 8. Непрерывные случайные величины.
Лекция 9. Центральные предельные теоремы и закон больших чисел.

Преподаватели

2540_45708989714879063.png

3558_54569086224757893.png

Результат обучения
  • Проверять векторы на линейную зависимость.
  • Решать системы линейных уравнений в матричной форме.
  • Вычислять собственные векторы и числа для матрицы.
  • Производить матричные разложения.
  • Вычислять производную функции нескольких аргументов.
  • Использовать различные методы оптимизации для поиска локального минимума функции.
  • Вычислять математическое ожидание и дисперсию дискретной случайной величины.
  • Использовать формулу Байеса для вычисления апостериорной вероятности.
  • Использовать закон больших чисел для оценки математического ожидания.


netology.ru/programs/mathematics-for-data-science

Скачать
 

Сверху Снизу